پایان نامه اعتبارسنجی واحد تجاری|مزایای شبکه های عصبی |
است انجام شود.
تحمل خطا : با ایجاد خرابی در شبکه مقداری از کارآیی کاهش می یابد ولی برخی امکانات آن با وجود مشکلات بزرگ همچنان حفظ می شود.
دسته بندی : شبکه های عصبی قادر به دسته بندی ورودی ها برای دریافت خروجی مناسب می باشند.
تعمیم دهی : این خاصیت شبکه را قادر می سازد تا تنها با برخورد با تعداد محدودی نمونه، یک قانون کلی از آن را بدست آورده، نتایج این آموخته ها را به موارد مشاهده از قبل نیز تعمیم دهد. توانایی که در صورت نبود آن سامانه باید بی نهایت واقعیت ها و روابط را به خاطر بسپارد.
پایداری – انعطاف پذیری : یک شبکه عصبی هم به حد کافی پایدار است تا اطلاعات فراگرفته خود را حفظ کند و هم قابلیت انعطاف و تطبیق را دارد و بدون از دست دادن اطلاعات قبلی میتواند موارد جدید را بپذیرد.(نوری بروجردی،اسگندری،1388، 6)
شبکه عصبی در شرایطی بکار می رود که ساختار مسائل روشن نیست و باید نوعی روند- شناسی یا
بازشناسی الگو صورت گیرد. مدیران مؤسسات مالی، نهادهای مالی در عمل با بسیاری از این شرایط مواجه اند.
شبکه عصبی از دیگر روشهای طبقه بندی نمونه به شمار می آید که در آن، فرض خطی بودن روابط میان متغیرها الزامی نمی باشد. استقلال متغیرهای توضیحی حذف شده است و در آن روابط پنهان بین متغیرهای توضیحی به عنوان یک متغیر اضافی وارد تابع می شود. در مورد شرکتها که اطلاعات کمتری نسبت به شخصیتهای حقیقی دارند بیشتر بکار رفته است. برای شناخت الگوهایی که در داده ها وجود دارند بسیار مفید هستند، خصوصاً در مواقعی که نوع رابطه بین هدف (به عنوان مثال ارزیابی وضعیت اعتباری) و متغیرهای ورودی (مثلا ویژگی های جمعیتی) نامشخص و یا پیچیده باشد.
شبکه های عصبی روش محاسبه ای متفاوت با روشهای متداول می باشند. محاسباتی که با روشهای معمولی انجام می شود از نوع برنامه ریزی شده است و در آنها الگوریتم ها و مجموعه هایی از قواعد به کار می روند تا مسأله را حل کنند. در این روشها اگر الگوریتمی در دست نباشد یا الگوریتم پیچیده باشد، راه حلی برای مسأله وجود نخواهد داشت. اما در محاسباتی که شبکه عصبی اجرا میکند به الگوریتم و مجموعه قواعد نیاز نیست.
تحقیقات به عمل آمده ثابت نموده که شبکه های عصبی نسبت به روشهای قبل از خود در ارزیابی نمودن اعتبار مشتریان از صحت بیشتری برخوردار بوده اند و این متد قابلیت ترکیب با سایر
[سه شنبه 1398-07-30] [ 01:05:00 ق.ظ ]
|