3-2- منطقه مورد مطالعه  34
3-3-وضعیت هواشناسی و اقلیمی حوضه مورد مطالعه  35
3-3-1- شبکه ایستگاه­های باران­سنجی   35
3-3-2- کنترل داده­های بارش    36
3-3-3- تخمین بارندگی در سطح حوضه  38
3-3-3-1- روش چند ضلعی­های­تیسن        38
3-3-4- فراوانی وقوع  40
3-4- ایستگاه­های هیدرومتری  40
3-4-1- ایستگاه بشار- قلات   41
3-4-2- ایستگاه یاسوج   42
3-4-3- ایستگاه مهریان   42
3-4-4-  ایستگاه شاه مختار  42
3-4-5- کنترل داده­های هیدرومتری   43
3-5- انتخاب رویدادهای مورد مطالعه  43
3-6- تهیه نقشه­های اولیه با استفاده از سیستم GIS  44
3-6-1- تهیه نقشه DEM منطقه  44
3-6-2- تهیه نقشه شبکه آبراهه­های منطقه  45
3-7- مشخصات حوضه  46
3-7-1- ترسیم مرز  زیرحوضه­ها 47
3-7-2- مساحت حوضه  49
3-7-3- محیط حوضه  49
3-7-4- طول آبراهه اصلی   49
3-7-5- شکل حوضه  50
3-7-6- ارتفاع حوضه و توزیع ارتفاعات   52
3-7-6-1- منحنی‌ هیپسومتری   52
3-7-6-2- ارتفاع میانه                   52
3-7-6-3- ارتفاع متوسط                   53
3-7-7- پروفیل طولی رودخانه  53
3-7-8- شیب حوضه  53
3-7-8-1-شیب آبراهه اصلی          54
3-7-8-2- استخراج شیب حوضه با استفاده از GIS      56
3-8- حجم رواناب   59
3-8-1- تلفات اولیه (Ia) 60
3-8-2- گروه هیدرولوژیکی خاک­ها 62
3-8-3- چگونگی وضعیت سطحی و استفاده از زمین   64
3-8-4- رطوبت اولیه خاک    66
3-8-5- نقش هیدرولوژیکی مجموعه خاک و پوشش آن   67
3-8-6- برآورد رواناب (جریان مستقیم) 70
3-8-7- کاربرد روش SCS  73
3-9- زمان تمرکز 74
3-9-1- روش پیشنهادی سازمان حفاظت خاک آمریکا (SCS) 75
3-9-2- معادله کرپیچ   75
3-9-3- معادله برانس بای- ویلیامز  76
3-9-4- معادله کالیفرنیا 77
3-10- جداسازی دبی پایه  77
3-11- روش­های برآورد سیلاب   79
3-11-1- روش­های تجربی مبتنی بر سطح حوضه  80
3-11-1-1- روش کریگر                        80 
3-11-1-2- رابطه دیکن                                  81
3-11-1-3- روش فولر                                   81
3-11-2- روش­های هیدروگراف واحد              82
3-11-2-1- هیدروگراف واحد  SCS                         83
3-11-2-2- هیدروگراف واحد اشنایدر            85
3-11-2-3- هیدروگراف واحد لحظه­ای کلارک     87
3-12- روندیابی سیلاب در شبکه رودخانه­ها 91
3-12-1- روش ماسکینگام  92
3-12-2- روش تاخیر  94
3-13- آنالیز فرکانس سیلابهای حداکثر یک­روزه 95
3-14- اولویت­بندی زیرحوضه­ها از لحاظ سیل­خیزی  96
3-15- تشریح مدل  HEC-HMS  97
3-15-1- ساختار اصلی مدل   99
3-15-1-1- بخش شبیه سازی اجزای حوضه         100
3-15-1-2- بخش تجزیه و تحلیل داده­های هواشناسی       106
3-15-1-3- تشریح بخش مشخصه­های کنترلی          111
3-15-1-4- تشریح بخش برآورد پارامترها و بهینه سازی           111
 
فصل چهارم: نتایج و بحث
4-1- مقدمه  119
4-2- نتایج واسنجی مدل

 

برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

HEC HMS در شرایط رطوبتی خشک   120
4-2-1- واسنجی مدل HEC HMS در رویداد 13/12/65  121
4-2-2- واسنجی مدل HEC HMS در رویداد 16/10/76  128
4-2-3- واسنجی مدل HEC HMS در رویداد 10/12/76  135
4-3- اعتبارسنجی مدل HEC HMS در شرایط رطوبتی خشک   142
4-3-1- اعتبار سنجی مدل HEC HMS در رویداد 27/12/76  146
4-4- انتخاب بهترین مدل جهت شبیه سازی بارش-رواناب در شرایط رطوبتی خشک   153
4-5- نتایج واسنجی مدل HEC HMS در شرایط رطوبتی مرطوب   154
4-5-1- واسنجی مدل HEC HMS در رویداد 10/09/73  155
4-5-2- واسنجی مدل HEC HMS در رویداد 17/12/74  162
4-5-3- واسنجی مدل HEC HMS در رویداد 16/01/76  169
4-6- اعتبار سنجی مدل HEC HMS در شرایط رطوبتی مرطوب   176
4-6-1- اعتبار سنجی مدل HEC HMS در رویداد 23/12/74  180
4-7- انتخاب بهترین مدل جهت شبیه سازی بارش- رواناب در شرایط رطوبتی مرطوب   187
4-8- نتایج تحلیل فراوانی بارش حداکثر روزانه  188
4-9- شبیه سازی دبی حداکثر سیلاب                                                               193        
4-10- نتایج محاسبه حداکثر سیلاب روزانه به روش­های تجربی مبتنی بر سطح حوضه  195
4-11- روابط منطقه­ای بارش- رواناب   198
4-12- نتایج اولویت­ بندی زیرحوضه­ها از لحاظ سیل­خیزی  200
 
فصل پنجم: نتیجه گیری و پیشنهادها
5-1- مقدمه  203
5-2- نتیجه­ گیری  203
5-3- پیشنهادها 205
مراجع و منابع                                                                                                       209
 چکیده 
حوضه آبریز بشار در جنوب غربی ایران در استان کهگیلویه و بویراحمد در منطقه­ای کوهستانی واقع شده است. رودخانه بشار که آبراه خروجی این حوضه می­باشد، یکی از سرشاخه­های اصلی رودخانه کارون بزرگ
می­باشد که به علت بالا بودن میزان بارندگی، سالانه سیلاب­های فراوانی در حوضه پدید می­آید. با توجه به واقع شدن شهر یاسوج مرکز استان کهگیلویه و بویراحمد در بالادست حوضه بشار و سدها، تاسیسات و اراضی کشاورزی زیادی در پایین دست این حوضه، تعیین سیلاب حوضه از اهمیت فراوانی برخوردار است. در این تحقیق جهت شبیه سازی فرآیند بارش- ­رواناب، ابتدا با به­کارگیری الحاقیه‌ArcHydro ، HEC-GeoHMS و نقشه DEM  منطقه در محیط سامانه اطلاعات جغرافیایی، مرز زیرحوضه‌ها و شبکه ‌آبراهه­ها و سایر خصوصیات فیزبوگرافی حوضه استخراج گردید. در ادامه آمار ایستگاه­های هیدرومتری و باران­سنجی موجود در منطقه جمع آوری و به همراه نتایج حاصل از فیزیوگرافی حوضه به نرم افزار HEC-HMS منتقل گردید. سپس جهت
شبیه سازی هیدروگراف سیلاب حوضه در دو شرایط رطوبتی خشک و مرطوب از مدل­های هیدروگراف واحد کلارک، SCS و اشنایدر استفاده گردید و برای روندیابی رودخانه­های حوضه روش ماسکینگام انتخاب شد. از میان بیش از 40 واقعه بارش- رواناب ثبت شده، 8 واقعه انتخاب گردید که 4 تای آن­ها در حالت خشک و 4 تای دیگر در حالت مرطوب می­باشند. سپس پارامترهای مدل بر اساس 6 هیدروگراف مشاهده­ای سیل مورد واسنجی و بر اساس 2 هیدروگراف مشاهده­ای دیگر ارزیابی شد. و پارامترهای بهینه مدل هیدروگراف واحد کلارک، SCS و اشنایدر برای حوضه آبریز مورد اشاره استخراج گردید. در آخر حداکثر دبی سیلاب با دوره بازگشت‌های مختلف برای زیرحوضه‌های مختلف حوضه‌ بدست آمد. همچنین بر اساس نتایج بدست آمده از حداکثر دبی پیک زیر حوضه‌ها و مساحت آن‌ها، به ازای دوره بازگشت‌های مختلف، رابطه‌ دبی- مساحت برای هر کدام از زیر حوضه‌­ها استخراج گردید.
کلمات کلیدی: هیدروگراف واحد، کلارک، SCS، اشنایدر، HEC-HMS، حوضه آبریز بشار، بارش-رواناب

فصل اول: کلیات
-1- مقدمه
سیل یک اتفاق ناگهانی و رویدادی سریع و مخرب است که هر ساله در نقاط مختلف جهان  باعث بروز خسارات جانی و مالی محسوس و نامحسوس فراوان می­شود. بررسی شمار وقوع سیل در سال­های اخیر نشان می­دهد، دیگر سیل نه یک مصیبت اتفاقی نادر، بلکه پدیده­ای فزاینده است که در هر بار وقوع، خسارات فراوانی را اعم از جانی و مالی به بار می­آورد. (سلیمانی ساردو، 1388) با تمام تلاش­هایی که در طول تاریخ انجام شده و با وجود پیشرفت تکنولوژی، هیچ گاه بشر نتوانسته است نواحی سیل­گیر را به طور کامل و برای همیشه از خطر سیل محفوظ نماید. به عبارت دیگر کنترل و

موضوعات: بدون موضوع  لینک ثابت